1,291 research outputs found

    The association of early post-transplant glucose levels with long-term mortality

    Get PDF
    Aims/objective: We aimed to assess the long-term effects of post-transplant glycaemia on long-term survival after renal transplantation. Methods: Study participants were 1,410 consecutive transplant recipients without known diabetes who underwent an OGTT 10 weeks post-transplant and were observed for a median of 6.7 years (range 0.3–13.8 years). The HRs adjusted for age, sex, traditional risk factors and transplant-related risk factors were estimated. Results: Each 1 mmol/l increase in fasting plasma glucose (fPG) or 2 h plasma glucose (2hPG) was associated with 11% (95% CI −1%, 24%) and 5% (1%, 9%) increments in all-cause mortality risk and 19% (1%, 39%) and 6% (1%, 12%) increments in cardiovascular (CV) mortality risk, respectively. Including both fPG and 2hPG in the multi-adjusted model the HR for 2hPG remained unchanged, while the HR for fPG was attenuated (1.05 [1.00, 1.11] and 0.97 [0.84, 1.14]). Compared with recipients with normal glucose tolerance, patients with post-transplant diabetes mellitus had higher all-cause and CV mortality (1.54 [1.09, 2.17] and 1.80 [1.10, 2.96]), while patients with impaired glucose tolerance (IGT) had higher all-cause, but not CV mortality (1.39 [1.01, 1.91] and 1.04 [0.62, 1.74]). Conversely, impaired fasting glucose was not associated with increased all-cause or CV mortality (0.79 [0.52, 1.23] and 0.76 [0.39, 1.49]). Post-challenge hyperglycaemia predicted death from any cause and infectious disease in the multivariable analyses (1.49 [1.15, 1.95] and 1.91 [1.09, 3.33]). Conclusions/interpretation: For predicting all-cause and CV mortality, 2hPG is superior to fPG after renal transplantation. Also, early post-transplant diabetes, IGT and post-challenge hyperglycaemia were significant predictors of death. Future studies should determine whether an OGTT helps identify renal transplant recipients at increased risk of premature death. © The Author(s) 2011. This article is published with open access at Springerlink.co

    Reptile enamel matrix proteins: Selection, divergence, and functional constraint

    Full text link
    The three major enamel matrix proteins (EMPs): amelogenin (AMEL), ameloblastin (AMBN), and enamelin (ENAM), are intrinsically linked to tooth development in tetrapods. However, reptiles and mammals exhibit significant differences in dental patterning and development, potentially affecting how EMPs evolve in each group. In most reptiles, teeth are replaced continuously throughout life, while mammals have reduced replacement to only one or two generations. Reptiles also form structurally simple, aprismatic enamel while mammalian enamel is composed of highly organized hydroxyapatite prisms. These differences, combined with reported low sequence homology in reptiles, led us to predict that reptiles may experience lower selection pressure on their EMPs as compared with mammals. However, we found that like mammals, reptile EMPs are under moderate purifying selection, with some differences evident between AMEL, AMBN, and ENAM. We also demonstrate that sequence homology in reptile EMPs is closely associated with divergence times, with more recently diverged lineages exhibiting high homology, along with strong phylogenetic signal. Lastly, despite sequence divergence, none of the reptile species in our study exhibited mutations consistent with diseases that cause degeneration of enamel (e.g. amelogenesis imperfecta). Despite short tooth retention time and simplicity in enamel structure, reptile EMPs still exhibit purifying selection required to form durable enamel.We calculated the percent identity between amino acid sequences of ameloblastin from various reptile groups. Crocodilians exhibit the highest sequence identity, while identity across squamates was substantially lower. Upon closer examination of the individual squamate clades, however, we found that identity values are actually much higher in snakes, with much of the variation existing between the various lizard infraorders.HIGHLIGHTSReptile enamel matrix proteins are under moderate purifying selection despite polyphyodonty and simple enamel structure.Sequence identity in reptile enamel matrix proteins exhibit correlation with divergence times in spite of differences in substitution rates.Reptile amelogenin operates under a distinct selection regime compared with ameloblastin and enamelin.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/150577/1/jezb22857.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/150577/2/jezb22857-sup-0001-Supplementary_file.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/150577/3/jezb22857-sup-0007-Supplementary_file_S8-DAMBE-Saturation.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/150577/4/jezb22857-sup-0002-Supplementary_file_S1-SpeciesTable.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/150577/5/jezb22857-sup-0003-Supplementary_file_S2_Alignments.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/150577/6/jezb22857-sup-0008-Supplementary_File_S9.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/150577/7/jezb22857-sup-0005-Supplementary_file_S6.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/150577/8/jezb22857_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/150577/9/jezb22857-sup-0009-Supplementary_file_Reptiles.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/150577/10/jezb22857-sup-0006-Supplementary_file_S7-DIVERGE.pd

    Dynamical models for sand ripples beneath surface waves

    Get PDF
    We introduce order parameter models for describing the dynamics of sand ripple patterns under oscillatory flow. A crucial ingredient of these models is the mass transport between adjacent ripples, which we obtain from detailed numerical simulations for a range of ripple sizes. Using this mass transport function, our models predict the existence of a stable band of wavenumbers limited by secondary instabilities. Small ripples coarsen in our models and this process leads to a sharply selected final wavenumber, in agreement with experimental observations.Comment: 9 pages. Shortened version of previous submissio

    Capsaicin-sensitive cutaneous primary afferents convey electrically induced itch in humans

    Get PDF
    Specially designed transcutaneous electrical stimulation paradigms can be used to provoke experimental itch. However, it is unclear which primary afferent fibers are activated and whether they represent pathophysiologically relevant, C-fiber mediated itch. Since low-threshold mechano-receptors have recently been implicated in pruriception we aimed to characterize the peripheral primary afferent subpopulation conveying electrically evoked itch in humans (50 Hz stimulation, 100 Όs square pulses, stimulus-response function to graded stimulus intensity). In 10 healthy male volunteers a placebo-controlled, 24-h 8% topical capsaicin-induced defunctionalization of capsaicin-sensitive (transient receptor potential V1-positive, ‘TRPV1’+) cutaneous fibers was performed. Histaminergic itch (1% solution introduced by a prick test lancet) was provoked as a positive control condition. Capsaicin pretreatment induced profound loss of warmth and heat pain sensitivity (pain threshold and supra-threshold ratings) as assessed by quantitative sensory testing, indicative of efficient TRPV1-fiber defunctionalization (all outcomes: P 0.0001). The topical capsaicin robustly, and with similar efficaciousness, inhibited itch intensity evoked by electrical stimulation and histamine (−89 ± 4.1% and −78 ± 4.9%, respectively, both: P 0.0001 compared to the placebo patch area). The predominant primary afferent substrate for electrically evoked itch in humans, using the presently applied stimulation paradigm, is concluded to be capsaicin-sensitive polymodal C-fibers.FSW - Self-regulation models for health behavior and psychopathology - ou

    Atmospheric Retrieval of L Dwarfs: Benchmarking Results and Characterizing the Young Planetary Mass Companion HD 106906 b in the Near-infrared

    Get PDF
    © 2023. The Author(s). Published by the American Astronomical Society. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0We present model constraints on the atmospheric structure of HD 106906 b, a planetary-mass companion orbiting at a ∌700 au projected separation around a 15 Myr old stellar binary, using the APOLLO retrieval code on spectral data spanning 1.1–2.5 ÎŒm. C/O ratios can provide evidence for companion formation pathways, as such pathways are ambiguous both at wide separations and at star-to-companion mass ratios in the overlap between the distributions of planets and brown dwarfs. We benchmark our code against an existing retrieval of the field L dwarf 2MASSW J2224–0158, returning a C/O ratio consistent with previous fits to the same JHK s data, but disagreeing in the thermal structure, cloud properties, and atmospheric scale height. For HD 106906 b, we retrieve C/O =0.53−0.25+0.15 , consistent with the C/O ratios expected for HD 106906's stellar association and therefore consistent with a stellar-like formation for the companion. We find abundances of H2O and CO near chemical equilibrium values for a solar metallicity but a surface gravity lower than expected, as well as a thermal profile with sharp transitions in the temperature gradient. Despite high signal-to-noise ratio and spectral resolution, more accurate constraints necessitate data across a broader wavelength range. This work serves as preparation for subsequent retrievals in the era of JWST, as JWST's spectral range provides a promising opportunity to resolve difficulties in fitting low-gravity L dwarfs and also underscores the need for simultaneous comparative retrievals on L-dwarf companions with multiple retrieval codes.Peer reviewe

    An L Band Spectrum of the Coldest Brown Dwarf

    Get PDF
    The coldest brown dwarf, WISE 0855, is the closest known planetary-mass, free-floating object and has a temperature nearly as cold as the solar system gas giants. Like Jupiter, it is predicted to have an atmosphere rich in methane, water, and ammonia, with clouds of volatile ices. WISE 0855 is faint at near-infrared wavelengths and emits almost all its energy in the mid-infrared. Skemer et al. 2016 presented a spectrum of WISE 0855 from 4.5-5.1 micron (M band), revealing water vapor features. Here, we present a spectrum of WISE 0855 in L band, from 3.4-4.14 micron. We present a set of atmosphere models that include a range of compositions (metallicities and C/O ratios) and water ice clouds. Methane absorption is clearly present in the spectrum. The mid-infrared color can be better matched with a methane abundance that is depleted relative to solar abundance. We find that there is evidence for water ice clouds in the M band spectrum, and we find a lack of phosphine spectral features in both the L and M band spectra. We suggest that a deep continuum opacity source may be obscuring the near-infrared flux, possibly a deep phosphorous-bearing cloud, ammonium dihyrogen phosphate. Observations of WISE 0855 provide critical constraints for cold planetary atmospheres, bridging the temperature range between the long-studied solar system planets and accessible exoplanets. JWST will soon revolutionize our understanding of cold brown dwarfs with high-precision spectroscopy across the infrared, allowing us to study their compositions and cloud properties, and to infer their atmospheric dynamics and formation processes.Comment: 19 pages, 21 figures. Accepted for publication in Ap

    Evidence for disequilibrium chemistry from vertical mixing in hot Jupiter atmospheres. A comprehensive survey of transiting close-in gas giant exoplanets with warm-Spitzer/IRAC

    Get PDF
    [Abridged] Aims. We present a large atmospheric study of 49 gas giant exoplanets using infrared transmission photometry with Spitzer/IRAC at 3.6 and 4.5um. Methods. We uniformly analyze 70 photometric light curves of 33 transiting planets using our custom pipeline, which implements pixel level decorrelation. We use this survey to understand how infrared photometry traces changes in atmospheric chemical properties as a function of planetary temperature. We compare our measurements to a grid of 1D radiative-convective equilibrium forward atmospheric models which include disequilibrium chemistry. We explore various strengths of vertical mixing (Kzz = 0 - 10^12 cm2/s) as well as two chemical compositions (1x and 30x solar). Results. We find that, on average, Spitzer probes a difference of 0.5 atmospheric scale heights between 3.6 and 4.5um, which is measured at 7.5sigma level of significance. We find that the coolest planets show a lack of methane compared to expectations, which has also been reported by previous studies of individual objects. We show that the sample of coolest planets rule out 1x solar composition with >3sigma confidence while supporting low vertical mixing (Kzz = 10^8 cm2/s). On the other hand, we find that the hot planets are best explained by models with 1x solar metallicity and high vertical mixing (Kzz = 10^12 cm2/s). We interpret this as the lofting of CH4 to the upper atmospheric layers. Changing the interior temperature changes the expectation for equilibrium chemistry in deep layers, hence the expectation of disequilibrium chemistry higher up. We also find a significant scatter in the transmission signatures of the mid-temperate and ultra-hot planets, likely due to increased atmospheric diversity, without the need to invoke higher metallicities. Additionally, we compare Spitzer transmission with emission for the same planets and find no evidence for correlation.Comment: 43 pages, 17 Figures. Accepted on 9 Feb 2021 in Astronomy & Astrophysic

    An Unusual Transmission Spectrum for the Sub-Saturn KELT-11b Suggestive of a Sub-Solar Water Abundance

    Full text link
    We present an optical-to-infrared transmission spectrum of the inflated sub-Saturn KELT-11b measured with the Transiting Exoplanet Survey Satellite (TESS), the Hubble Space Telescope (HST) Wide Field Camera 3 G141 spectroscopic grism, and the Spitzer Space Telescope (Spitzer) at 3.6 ÎŒ\mum, in addition to a Spitzer 4.5 ÎŒ\mum secondary eclipse. The precise HST transmission spectrum notably reveals a low-amplitude water feature with an unusual shape. Based on free retrieval analyses with varying molecular abundances, we find strong evidence for water absorption. Depending on model assumptions, we also find tentative evidence for other absorbers (HCN, TiO, and AlO). The retrieved water abundance is generally â‰Č0.1×\lesssim 0.1\times solar (0.001--0.7×\times solar over a range of model assumptions), several orders of magnitude lower than expected from planet formation models based on the solar system metallicity trend. We also consider chemical equilibrium and self-consistent 1D radiative-convective equilibrium model fits and find they too prefer low metallicities ([M/H]â‰Č−2[M/H] \lesssim -2, consistent with the free retrieval results). However, all the retrievals should be interpreted with some caution since they either require additional absorbers that are far out of chemical equilibrium to explain the shape of the spectrum or are simply poor fits to the data. Finally, we find the Spitzer secondary eclipse is indicative of full heat redistribution from KELT-11b's dayside to nightside, assuming a clear dayside. These potentially unusual results for KELT-11b's composition are suggestive of new challenges on the horizon for atmosphere and formation models in the face of increasingly precise measurements of exoplanet spectra.Comment: Accepted to The Astronomical Journal. 31 pages, 20 figures, 7 table

    Gridded and direct Epoch of Reionisation bispectrum estimates using the Murchison Widefield Array

    Full text link
    We apply two methods to estimate the 21~cm bispectrum from data taken within the Epoch of Reionisation (EoR) project of the Murchison Widefield Array (MWA). Using data acquired with the Phase II compact array allows a direct bispectrum estimate to be undertaken on the multiple redundantly-spaced triangles of antenna tiles, as well as an estimate based on data gridded to the uvuv-plane. The direct and gridded bispectrum estimators are applied to 21 hours of high-band (167--197~MHz; zz=6.2--7.5) data from the 2016 and 2017 observing seasons. Analytic predictions for the bispectrum bias and variance for point source foregrounds are derived. We compare the output of these approaches, the foreground contribution to the signal, and future prospects for measuring the bispectra with redundant and non-redundant arrays. We find that some triangle configurations yield bispectrum estimates that are consistent with the expected noise level after 10 hours, while equilateral configurations are strongly foreground-dominated. Careful choice of triangle configurations may be made to reduce foreground bias that hinders power spectrum estimators, and the 21~cm bispectrum may be accessible in less time than the 21~cm power spectrum for some wave modes, with detections in hundreds of hours.Comment: 19 pages, 10 figures, accepted for publication in PAS

    Uniform Atmospheric Retrieval Analysis of Ultracool Dwarfs I : Characterizing Benchmarks, Gl570D and HD3651B

    Get PDF
    Michael Line, et al, 'UNIFORM ATMOSPHERIC RETRIEVAL ANALYSIS OF ULTRACOOL DWARFS. I. CHARACTERIZING BENCHMARKS, Gl 570D AND HD 3651B', The Astrophysical Journal, Vol. 802 (2), July 2015, doi: https://doi.org/10.1088/0004-637X/807/2/183, published by IOP.Interpreting the spectra of brown dwarfs is key to determining the fundamental physical and chemical processes occurring in their atmospheres. Powerful Bayesian atmospheric retrieval tools have recently been applied to both exoplanet and brown dwarf spectra to tease out the thermal structures and molecular abundances to understand those processes. In this manuscript we develop a significantly upgraded retrieval method and apply it to the SpeX spectral library data of two benchmark late T-dwarfs, Gl570D and HD3651B, to establish the validity of our upgraded forward model parameterization and Bayesian estimator. Our retrieved metallicities, gravities, and effective temperature are consistent with the metallicity and presumed ages of the systems. We add the carbon-to-oxygen ratio as a new dimension to benchmark systems and find good agreement between carbon-to-oxygens ratio derived in the brown dwarfs and the host stars. Furthermore, we have for the first time unambiguously determined the presence of ammonia in the low-resolution spectra of these two late T-dwarfs. We also show that the retrieved results are not significantly impacted by the possible presence of clouds, though some quantities are significantly impacted by uncertainties in photometry. This investigation represents a watershed study in establishing the utility of atmospheric retrieval approaches on brown dwarf spectra.Peer reviewedFinal Published versio
    • 

    corecore